Synthesis, X-ray structure, and properties of a tetrabenzannelated 1,2,4,5-cyclophane.

نویسندگان

  • Michael Brettreich
  • Michael Bendikov
  • Sterling Chaffins
  • Dmitrii F Perepichka
  • Olivier Dautel
  • Hieu Duong
  • Roger Helgeson
  • Fred Wudl
چکیده

Parylene is the most frequently used material in the protective encapsulation of modern electronic components and medical implants.[1] This high-performance polymer is produced by the pyrolytic decomposition of [2.2]paracyclophane.[1c] Another high-performance organic material with even stronger C C bonds would be produced if another highly strained, all-aromatic cyclophane could be pyrolyzed, thus resulting in a TMsuperparylene∫. However, contrary to the mode of pyrolytic decomposition of [2.2]paracyclophane, where scission of the Csp3 Csp3 bond is the important first step leading to a p-xylylene monomer, in the case of a molecule such as 1 (Scheme 2), cleavage of a biaryl bond would produce a very reactive diradical monomer. Angle and bond strain in organic molecules and their effect on properties also continue to be an active field of research.[2] Over the last five decades, a substantial number of chemists have prepared many fascinating, strained saturated and unsaturated molecules.[2,3] The most notable of the strained unsaturated molecules are those of the fullerene C60 and the cyclophane families.[5] In the former, the hexagons are essentially cyclohexatrienes[6] and in the latter, the hexagons, while considerably distorted, still retain their benzenoid character. Since the first synthesis of [2.2]paracyclophane diene by Dewhirst and Cram,[7] a variety of [2.2]paracyclophanes with unsaturated or benzannelated bridges have been synthesized.[8] The influence of the bridges on the transannular benzene interactions and the geometry of the strained cyclophanes has been widely investigated.[9] To date, only a few unsaturated bridged and benzannelated cyclophanes are known,[9] but no benzannelated [2n]cyclophane with more than two bridges (n> 2) has been reported.[10] One would expect that, as the number of o-phenylene bridges increased, the total strain would also increase. To prepare a superparylene and to test the effect of benzo bridges in place of the alkyl bridges of cyclophanes one needs a rapid, reasonably high-yield synthetic entry. A priori, based on existing cyclophane synthetic methodology, the preparation of a symmetrical tetrabenzannelated [2n]cyclophane tetraene would appear to be rather difficult and lengthy. However, careful consideration of the molecular symmetry of the target revealed that the synthesis could be easily achieved. Herein, we describe the synthesis, X-ray structure, and some of the properties of the symmetrically benzannelated [24]cyclophane tetraene 1. In future publications we will report on the results of its pyrolytic decomposition. In Scheme 1 we depict the retrosynthetic analysis with a rather unusual disconnection leading to two dibenzocyclooctadiene-diynes and four methine units. As shown, the latter can originate from a meso-ionic precursor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors

Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...

متن کامل

Synthesis of BiVO4 nanoparticles by the co-precipitation method and study the crystal structure, optical and photocatalytic properties of them

In this paper, the bismuth vanadate (BiVO4) nanoparticles were synthesized at 600 °C calcination temperature by co-precipitation method. To study the crystal structure, morphology, optical and photocatalytic properties of the samples, the X-ray diffraction analysis, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy and ult...

متن کامل

An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application

In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...

متن کامل

Synthesis and characterization of SnO2 nanoparticles by Co-Precipitation method

Tin oxide (SnO2)nanoparticles were synthesized by co-precipitation method and the synthesized nanoparticles were annealed at different temperatures for characterization. The powders were investigated with X-ray diffraction, scanning electron microscopy and optical spectroscopy. The structural characterization was carried out by X-ray diffraction which confirms the crystalline nature ...

متن کامل

An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application

In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 41 19  شماره 

صفحات  -

تاریخ انتشار 2002